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Highly diastereoselective synthesis of new indolopyrroloquinolines
through intramolecular imino Diels–Alder reactions
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Abstract—A new, efficient and highly diastereoselective one-pot synthesis of cis-fused indolopyrroloquinoline derivatives is
described through imino Diels–Alder reaction of substituted anilines or naphthylamines with N-prenylated-2-formyl-3-chloro-
indoles catalyzed by La(OTf)3.
� 2007 Elsevier Ltd. All rights reserved.
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Pyrroloquinoline systems have been found in Nature
and their syntheses have been reviewed.1 The unusual
pyrroloquinoline nucleus of the martinellines has
attracted attention due to their antibacterial activity as
well as affinity for adrenergic, muscarinic and brady-
kinin receptors.2 Pyrroloquinoline quinone (PQQ) is
an important redox-active co-factor used by a number
of bacterial dehydrogenases.3

Interest in the pyrrolo[1,2-a]indole skeleton is connected
with its structural relationship with mitomycins,4 an
important class of antibiotics characterized by notewor-
thy antitumour activity.5 In particular, mitomycin C is
used in clinical cancer chemotherapy. Following the dis-
covery and total synthesis of mitomycin C, a number of
compounds have been synthesized by molecular modifi-
cations at the pyrrolo[1,2-a]indole without significant
loss of biological activity.6 Therefore, large efforts have
been directed towards the synthesis of functionalized
pyrrolo[1,2-a]indole derivatives as mitomycin analogues
and as a result, numerous heterocycle-annulated pyr-
rolo[1,2-a]indole derivatives have been reported.7

The imino Diels–Alder reaction provides a rapid means
for the construction of functionalized rings containing
nitrogen with control of regio-, diastereo- and enantio-
selectivity.8 The reaction of imines with electron rich
dienophiles have been reported to be catalyzed by Lewis
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acids,9 however, most of the Lewis acids are either
decomposed or deactivated due to the formation of
water during imine formation. Lanthanum(III) triflate
has been used to catalyze a variety of reactions.10 It is
stable under aqueous conditions, and catalyzes aldol
and allylation reactions in aqueous media.11

We are interested in annulation reactions at the 1,2-po-
sition of the indole ring in light of the fact that pyr-
rolo[1,2-a]indole units are present in mitosenes and
mitomycins. These compounds show antibiotic and
antitumour activity and inhibit bacterial cell division
through a mechanism involving DNA alkylation.12

Herein, we report the syntheses of biologically impor-
tant pyrroloquinolines and pyrroloindoles5 in a single
step reaction (Fig. 1).

The imine derived from the reaction of N-prenylated-2-
formyl-3-chloroindole 1 with aniline in 1,4-dioxane at
reflux temperature underwent intramolecular [4+2]
cycloaddition in the presence of a Lewis acid to yield
indolopyrroloquinolines 3a and 4a as a mixture of
H
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Figure 1.
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Table 1. Synthesis of new indolopyrroloquinoline derivatives
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diastereomers where the cis-isomer was the major pro-
duct (Scheme 1). The diastereoselectivity varied with
respect to the nature of the catalyst (Table, see
Supplementary data), however, in all the cases, the cis
diastereomer was the major product. Several catalysts
were screened and amongst them, Sc(OTf)3, Yb(OTf)3

and La(OTf)3 provided excellent diastereoselectivity
and also had similar reactivity in terms of reaction yield,
diastereomer ratio and reaction time. The diastereo-
selectivity was further improved by maintaining the
reaction at 130–140 �C and only the cis diastereomer
was obtained with La(OTf)3 (10 mol %). An increase
in temperature did not improve the diastereomer ratio
with the other catalysts listed (Table, see Supplementary
data), except for Sc(OTf)3 and Yb(OTf)3. The reaction
was faster in 1,4-dioxane than CH3CN and THF.
Moderate yields were obtained with DMSO or toluene
as the solvent.

The diastereomers were readily separated by column
chromatography on silica gel, and their stereochemistry
was assigned based on 1H NMR and NOE studies. The
five-membered pyrrolidine and six-membered piperidine
rings were cis-fused, as indicated by the coupling con-
stant J5a–12a = 7.2 Hz between H5a (d 5.05) and H12a (d
3.22) in product 3a and also the strong NOE (8.0%)
enhancement of H12a upon irradiation of H5a. The N–
H peak was not observed in the 1H NMR spectra of
compounds 3a–g since it undergoes deuterium exchange
with CDCl3, however, a broad singlet at d 5.79 due to
N–H was observed for 3a in DMSO-d6. The stereochem-
istry of the cis-isomer was also confirmed by single crys-
tal X-ray diffraction of 3a (Fig. 2).13 The high coupling
constant, J5a–12a = 10.4 Hz between H5a (d 4.77) and
H12a (d 3.02) supported the trans configuration of prod-
uct 4a and there was no considerable NOE between
these two protons.
Figure 2. ORTEP diagram of 3a.
The preparation of indolopyrroloquinoline derivatives
with other p-substituted anilines under the optimized
conditions was carried out and the results are summa-
rized in Table 1. In all cases, the one-pot cycloaddition
reaction proceeded smoothly and yielded the corre-
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Figure 3. ORTEP diagram of 3f.
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sponding product as a single diastereomer having the
cis-configuration. Extending the methodology further,
we examined the reactivity of naphthylamines with 1
in 1,4-dioxane at 130–140 �C. The reaction was clean
and highly diastereoselective and afforded the corres-
ponding cis-fused indolopyrroloquinolines 3f and 3g in
good yields (Scheme 2 and Table 1). The structure of
3f was confirmed by single crystal X-ray analysis
(Fig. 3).14

In summary, we have successfully synthesized indolo-
pyrroloquinolines15 via intramolecular imino Diels–
Alder [4+2] cycloadditions. This method provides syn-
thetically useful indole-annulated pyrroloquinolines in
good yields.
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